If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-180x-225=0
a = 1; b = -180; c = -225;
Δ = b2-4ac
Δ = -1802-4·1·(-225)
Δ = 33300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33300}=\sqrt{900*37}=\sqrt{900}*\sqrt{37}=30\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-30\sqrt{37}}{2*1}=\frac{180-30\sqrt{37}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+30\sqrt{37}}{2*1}=\frac{180+30\sqrt{37}}{2} $
| 5h+25=6h+18 | | 18x=204 | | -2.4x=14.4 | | 16925*x=2898.25 | | .10x+0.05(8-x)=0.10(9) | | 29=y÷4+11 | | x^2+2x2-9x+18=0 | | 11x-6=2x-69 | | x2+2x2-9x+18=0 | | 2x-10=5x+40 | | x3+2x2-9x+18=0 | | 45=36x+24 | | 60=27x+2 | | 1/2(2x+6)9=180 | | P=2n2-40n-165 | | 9(x+1)-(4x-1)=2 | | x-x/3+5x=x-2x | | 3x+15/6=5x+18/8 | | x/5x-2=2/11 | | 8/5x=2/7 | | 22-2x=29 | | 2x-22=29 | | 6(4x+5)+6(4x+3)+5=48x+54 | | 2(6x+3)+2(2x+5)+3=16x+19 | | 4(9)+3y=9 | | 21.5+0.5x=27.5 | | 19(x+1.4)=14(3x+2) | | 378=1/2h(18+24) | | 2(x^2+7)=6 | | 2(x+21)+3(x-4)=5(x+6) | | 3y-7=41-y | | 3(x+6)-3=6(x+2)-6 |